Что такое симистор, как он работает и для чего нужен

Что такое симистор? Подробное описание структуры, принципа работы, ВАХ полупроводника

Симисторы – это приборы, которые являются полупроводниковыми компонентами (по терминологии США, они называются триаки), выполняющие ключевую роль по проведению тока в оба направления.

Прежде всего, симистор – это ключ-регулятор, используемый для цепей постоянного тока, он также выполняет функцию двунаправленного транзистора. Элемент состоит из двух основных силовых электродов – это электрод, находящийся со стороны управляющего электрода и СЭ –электрод со стороны основания элемента. Свое название симистор получил в результате использования двух встречно-параллельных включаемых тиристоров с одним управляющим электродом.

Рис.№1. Условное схематичное обозначение симистора и его внешний вид с обозначением позиций: 1 – анод; 2 – силовой электрод; 3 – управляющий электрод или катодный выход; 4 управляющий выход. Управляющий электрод выводится на туже сторону, что и катод. Анод служит основанием устройства и изготовлен в виде шестигранника и крепежной шпильки, на которой нарезана резьба для установки на охлаждающем радиаторе. Катод и управляющий выход отделены от основания изоляцией.

Благодаря способности проводить электроток в обе стороны симистор может выполнять функцию трехэлектродного полупроводникового прибора.

Он может переходить из закрытого положения в состояние открытости и работать в обратную сторону при обеих полярностях напряжения, присутствующего на основных электродах.

Рис. №2. ВАХ симистора. В соответствии с устройством полупроводниковой структуры, включенный в основную цепь он переходит в состояние проводимости при поступлении на управляющий электрод напряжения положительного значения относительно СЭУ напряжения, либо U обеих полярностей.

Полупроводниковая структура симистора

Структура симистора состоит из пластины, состоящей из чередующихся слоев с электропроводностями p- и n- типа и из контактов электродов основного и управляющего действия.

. Всего в структуре полупроводника содержится пять слоев p- и n-типа. Область между слоями называется p-n-переходом, который обладает нелинейной ВАХ с небольшим сопротивлением в обратном направлении, где минус – это n-слой, а плюс – p-слой и высокое значение сопротивления в обратном направлении. Пробой p-n-перехода происходит при напряжении равном несколько тысяч вольт.

Во время включения симистора в прямом направлении в работу вступает правая половина структуры. Левая область структуры выключена, она считается для тока, с обладанием очень высоким сопротивлением. Характеристики симистора динамического и статического плана при его действии в прямом направлении, при поступлении положительного управляющего сигнала соответствуют аналогичным характеристикам тиристора, работающего в прямом направлении.

Рис. №4. Структура симистора, включенного в обратном направлении. По этой схеме к СЭУ прилагается напряжение со знаком плюс, относительно СЭ, а pn-переходы j2 и j4 подключаются в прямом, а pn-переходы j1 и j3 – в обратную сторону. Благодаря этому структура может рассматриваться, как структура тиристора, подключенная в обратном направлении, не принимающая участие в работе по пропусканию тока. В этом случае действие прибора определяется при помощи левой части структуры и представляет собой обратно ориентированную pnpn структуру с добавочным пятым слоем n , который граничит со слоем p1.

Использование симистора

Симистор представляется настолько гибким и универсальным устройством, что благодаря его свойству переключения в проводящее состояние запускаемым импульсом с положительным или отрицательным знаком, который не зависит от источника проявляющего свойства мгновенной полярности. По сути названия анод и катод для прибора не имеют большой актуальности.

  1. Одно из популярных и простейших сфер использования симистора может считаться его применение в качестве твердотельного реле. Для него характерно малое значение пускового тока достаточного для нагрузки с большими токами. Функцию ключа в таком устройстве может играть геркон, или обладающее большой чувствительностью термореле и прочие контактные пары с током до 50мА, при этом величина тока нагрузки может ограничиваться исключительно показателями, на которые рассчитан симистор.

Рис.№5. Схема твердотельного реле с использованием симистора.

  1. Не менее широко использование симистора в качестве регулятора интенсивности освещения и управления скоростью вращения электромотора. Схема построена на использовании запускающих элементов, которые устанавливаются RC-фазовращателем, такой элемент, как потенциометр регулирует интенсивность освещения, а резистор служит для ограничения тока нагрузки. Формирование импульсов выполняется с помощью динистора. После пробоя в динисторе, который происходит в результате разности потенциалов на конденсаторе, импульс разряда конденсатора, возникающий мгновенно включает симистор.
Читайте также:
Тротуарная плитка для дорожек на даче (44 фото): природный эко-камень в виде ромба, материалы «паутинка» и под дерево для сада

Рис. №6. Схема регулирования света с использованием симистора с фазовым управлением.

  1. Управление мощностью в нагрузке с использованием в схеме добавочной RC-цепочки, что дает большой фазовый сдвиг, который облегчает задачу по управлению мощности.

Преимущества использования симисторов

  • Увеличение разрешенной критической величины напряжения коммутации, что разрешает управления большими реактивными нагрузками без существенных сбоев в коммутации. Это позволяет уменьшить число компонентов, размеры печатной платы, снизить цену и убрать потери на рассеивание энергии демпфером.
  • Повышение критической величины изменения тока коммутации, что повышает качество работы на высокой частоте для несинусоидального напряжения.
  • Большая чувствительность к высокой температуре рабочего процесса.
  • Высокое значение допустимого напряжения снижает стремление к самовключению из состояния отсутствия проводимости при большой температуре, что разрешает их использование для резистивных нагрузок по управлению бытовой и нагревательной техникой.
  • Долговечность симистора, обусловленная рабочими температурными перепадами, отличается практически неограниченным ресурсом.
  • Отсутствие искрообразования и возможность управления в момент нулевого тока в сети, что снижает электромагнитные помехи.

Основные достоинства семистора:

  1. большая частота срабатывания для высокой точности управления;
  2. высокий ресурс по сравнению с релейными электромеханическими устройствами;
  3. возможность добиться небольших размеров приборов;
  4. отсутствие шума при включении и отключении электроцепей.

Силовая электроника, с использованием симисторов, разработанная отечественными производителями благодаря своим качественным показателям может составить западным фирмам высокую конкуренцию.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Разбираемся в характерных особенностях симисторов, их устройстве и принципе работы

Симистор – прибор, имеющий пять p-n переходов. Изобретен он был в Советском Союзе на Саранском заводе еще в 60-х годах прошлого столетия.

Его работа подобна функционированию тиристора, откуда и взялось название симистор (в иностранной литературе – триак), что означает симметричный тиристор.

Обозначение элемента на схемах представляет собой два включенных навстречу друг другу диода.

Принцип действия симистора

Особенность симистора, по сравнению с тиристором, состоит в том, что этот прибор проводит электрический ток в двух направлениях. Благодаря этому свойству такой элемент с успехом используется в цепях переменного тока. Если посмотреть на вольтамперную характеристику симисторов, то можно увидеть, что она симметрична относительно оси тока.

Поэтому устройство симистора не предусматривает использование анода и катода в своих схемах. Там устроены:

  • силовой электрод 1 (МТ1);
  • силовой электрод 2 (МТ2);
  • управляющий электрод (G).

Для определенности предположим, что на управляющий электрод подано отрицательное относительно МТ1 напряжение. Если этот показатель больше соответствующей величины включения симистора и на силовой электрод подается напряжение, достаточное для протекания в приборе тока, превышающего ток удержания симистора, то через прибор проходит электричество.

[attention type=yellow]Закрывается тиристор после того, как напряжение на силовом электроде упадет до величины, при которой ток прибора уменьшится до тока удержания. [/attention]При подаче на силовой электрод переменного напряжения это происходит обычно при изменении полярности подаваемого напряжения.

[blockquote_gray]Главное преимущество схем регуляторов мощности на симисторе — это возможность обеспечения качественной обратной связи и, соответственно, корректировки работы по ней. То есть, такие устройства используются в качестве бесконтактных ключей со своими преимуществами.

Например, наиболее практичным вариантом светорегулятора для обычных ламп накаливания является схема именно на современных полупроводниковых элементах — тиристоре, динисторе и симисторе.[/blockquote_gray]

Для рассмотренного режима возможны четыре варианта подачи напряжения на силовой (МТ2) и управляющий электроды симистора. Первый и второй варианты предполагают подачу на МТ2 положительного, а на G – отрицательного или положительного напряжения.

Читайте также:
Сорта розовой эустомы

Третий и четвертый варианты предполагают подачу на МТ2 отрицательного напряжения, а на электрод G – соответственно отрицательного или положительного. [attention type=red]При этом 1, 2 и 3 варианты являются для симистора рабочими, а четвертый – запрещенным. [/attention]При работе в этом режиме элемент может выйти из строя. Поэтому используются различные методы защиты от случайного выхода симистора в этот режим.

Плюсы и минусы в использовании

Симисторы обладают следующими достоинствами:

  • относительно небольшая стоимость прибора;
  • увеличенный срок службы;
  • отсутствие механических контактов.

При использовании симисторов в релейных схемах благодаря отсутствию механических контактов не бывает искрения, являющегося источником радиопомех.

  • для защиты от перегрева прибора необходимо использовать радиатор;
  • чувствительность к переходным процессам;
  • не работает на больших частотах;
  • чувствителен к помехам и шумам.

[attention type=yellow]Особенностью симистора является то, что падение напряжения на приборе в открытом состоянии не зависит от протекающего тока и составляет около 2 В. [/attention]При больших токах переключения (около 40 А) мощность рассеивания на приборе будет равна около 80 Вт.

Поэтому без теплоотвода симисторы могут быть использованы только при малых нагрузках. В противном случае необходимо использовать радиатор. При этом наилучшим способом крепления симистора к радиатору является крепление с помощью винта.

[blockquote_gray]Принцип работы блока бесперебойного питания для компьютера заключается в преобразовании постоянного тока из сети в переменный. При обесточивании прибор использует накопленную электроэнергию из собственных аккумуляторов.

Важную роль в стабильной работе ПК играет блок питания. Как правильно определить его неисправности и способы их устранения — описаны в отдельной статье. О способах решения поломок импульсного блока питания читайте здесь. [/blockquote_gray]

При высокой скорости изменения переключаемого симистором напряжения может возникать эффект самопроизвольного включения прибора без наличия управляющего напряжения. Это может привести к разрушению устройства. [attention type=green]Причиной резкого повышения скорости изменения напряжения может быть появление помехи или выбросы напряжения при работе с нагрузкой, имеющей индуктивный характер. Для предотвращения разрушения симистора в таких случаях рекомендуется включение шунтирующей RC цепочки.[/attention]

В некоторых цепях возможно появление электрических помех и шумов. Если напряжение этих шумов на затворе достигнет значения включения, то симистор может сработать в неподходящий момент. Для предотвращения этого рекомендуется уменьшить длину проводов, ведущих к затвору или заменить их экранированным кабелем. Кроме того, для уменьшения влияния шумов между затвором и электродом МТ1 можно включить резистор величиной в 1 кОм.

Особенности задействования в технике

Благодаря своим параметрам симисторы могут быть использованы в различных областях бытовой техники и промышленности. Например:

  • приборы для регулировки освещения (диммеры — что это, мы ранее рассматривали);
  • электроинструмент для строительства (дрели, перфораторы и т. п.);
  • электронагревательные приборы (печи, духовки);
  • холодильники, кондиционеры (компрессоры);
  • пылесосы, вентиляторы, фены, стиральные машины и т.п.

В промышленности симисторы используются для регулировки осветительными и нагревательными приборами, а также для управления электродвигателями.

Выводы:

  1. Симистор – полупроводниковый прибор, имеющий пять p-n переходов.
  2. Этот прибор предназначен для коммутации мощных электрических цепей и с успехом заменяет электромеханические реле.
  3. Прибор широко используется в блоках бытовой техники и в промышленности.

Принцип работы симистора на видео

Как работает симистор: плюсы и минусы применения

Симистором называется прибор, разработанный ещё в СССР на электрозаводе города Саранска. Он имеет 5 р-n переходов.

  • Принцип действия
  • Плюсы и минусы использования
  • Применение симистора

История его создания приходится на 1960-е годы, на то время, когда Мордовский институт заполнил патент на это изобретение.

О том, как работает симистор, знают немногие. Его функционирование напоминает работу тиристора.

Принцип действия

Пожалуй, основное отличие симистора от тиристора заключается в том, что первый прибор может пропускать ток в двух направлениях, из-за чего он нашёл своё применение в электроцепях переменного тока.

Читайте также:
Что такое станок сверлильный. Сверлильный станок – о незаменимом оборудовании во всех ракурсах

В симисторе отсутствует катод и анод. Этот факт подтверждается при изучении вольт-амперной характеристики прибора.

Также можно заметить, что он имеет симметрию с осью тока. В его схеме присутствует два силовых электрода (МТ1 и МТ2) и управляющий электрод (G). Если на второй показатель подать напряжение со знаком минус, и его показатель окажется выше заданной величины срабатывания симистора, и одновременно на силовой электрод подать напряжение, достаточное для протекания в приборе тока, превышающего ток удержания симистора, то он будет пропускать электричество.

Закрыться же прибор сможет после того, как напряжение на силовом электроде упадёт до величины, при которой ток прибора снизится до тока удержания.

Основным достоинством схем регуляторов мощности на приборе является наличие хорошей двусторонней связи, следовательно, появляется уникальная возможность её изменения непосредственно в период работы устройства.

Такие схемы часто используются для регулирования света при использовании всем известных ламп накаливания. Для их реализации применяются

  • тиристор;
  • динистор;
  • симистор.

Для такого режима работы можно использовать 4 способа для подачи напряжения на МТ2 и G (управляющий электрод). Два первых варианта требуют подать напряжение со знаком плюс на силовой электрод (МT2) и отрицательное или положительное на управляющий электрод. Последующие два варианта требуют подать на силовой электрод (МT2) напряжение со знаком минус и положительное или отрицательное на управляющий электрод.

Важно, что 1−3 способы считаются рабочими, а четвёртый запрещённым, так как в этом режиме может произойти поломка.

Плюсы и минусы использования

У симистора в принципе работы можно выделить ряд достоинств. Главными его преимуществами являются:

  • низкая стоимость;
  • повышенный срок эксплуатации.

Из-за отсутствия каких-либо механических контактов прибор не искрит, что повышает безопасность его применения, кроме того, отсутствуют радиопомехи при его работе.

К минусам аппарата обычно относят его сильный перегрев при отсутствии радиаторов охлаждения. Поэтому прибор следует использовать лишь при незначительных нагрузках на него или же установить радиатор охлаждения.

Крепить аппарат к охладителю следует креплением с использование винта. Аппарат очень чуток к переходным процессам и не будет работать стабильно на больших частотах, а также имеет сильную чувствительность к различного рода шумам и помехам.

В качестве примера можно привести компьютерный блок бесперебойного питания. Суть его работы заключается в том, что ток сети преобразовывается из постоянного в переменный. При отключении этого блока симистор начинает брать накопившееся электричество из своего встроенного аккумулятора.

Огромное значение для персонального компьютера играет и блок электропитания в целом. При резком переключении напряжения может произойти самовольное включение симистора при отсутствии управляющего напряжения. Всё это может его повредить. Всему виной возникновение помехи или выбросы напряжения при работе с нагрузкой.

Чтобы не дать симистору сломаться, следует включить шунтирующую RC цепочку. Однако в определённых цепях могут возникнуть электрические помехи и шумы. Если они достигнут значения включения, то прибор включится не в то время. Чтобы этого не произошло, следует укоротить провода, которые ведут к затвору, или же использовать экранированный кабель.

Ещё одним способом для избавления от шумов является использование резистора, величина которого составляет 1кОМ.

Применение симистора

Из-за своих уникальных характеристик, простоты устройства и небольшой стоимости симистор успешно применяется как в быту, так и в промышленности, в следующих видах техники:

  • печи;
  • духовки;
  • регуляторы освещения;
  • дрели;
  • перфораторы.

Практически в каждом электроприборе, имеющемся в доме, найдётся симистор.

В промышленной сфере приборы применяются при регулировке света, кроме того, с их помощью регулируются электроприборы и электродвигатели.

Симистор легко сможет заменить электромеханические реле, так как он намного более долговечен и надёжен. Аппарат очень хорошо зарекомендовал себя на рынке и, несмотря на бурно развивающуюся электронику, до сих пор пользуется большим спросом, так как нашёл широкое применение не только в домашней технике, но и в промышленности.

Читайте также:
Удивительные поделки из дерева

Чем симистор отличается от тиристора

Тиристором называется управляемый полупроводниковый переключатель, обладающий односторонней проводимостью. В открытом состоянии он ведет себя подобно диоду, а принцип управления тиристором отличается от транзистора, хотя и тот и другой имеют по три вывода и обладают способностью усиливать ток.

Выводы тиристора — это анод, катод и управляющий электрод.

Анод и катод — это электроды электронной лампы или полупроводникового диода. Их лучше запомнить по изображению диода на принципиальных электрических схемах. Представьте, что электроны выходят из катода расходящимся пучком в виде треугольника и приходят на анод, тогда вывод от вершины треугольника — катод с отрицательным зарядом, а противоположный вывод — анод с положительным зарядом.

Подав на управляющий электрод определенное напряжение относительно катода, можно перевести тиристор в проводящее состояние. А для того чтобы тиристор вновь запереть, необходимо сделать его рабочий ток меньшим, чем ток удержания данного тиристора.

Тиристор, как полупроводниковый электронный компонент, состоит из четырех слоев полупроводника (кремния) p и n-типа. На рисунке верхний вывод — это анод — область p-типа, снизу — катод — область n-типа, сбоку выведен управляющий электрод — область p-типа. К катоду присоединяется минусовая клемма источника питания, а в цепь анода включается нагрузка, питанием которой следует управлять.

Воздействуя на управляющий электрод сигналом определенной длительности, можно очень легко управлять нагрузкой в цепи переменного тока, отпирая тиристор на определенной фазе периода сетевой синусоиды, тогда закрытие тиристора будет происходить автоматически при переходе синусоидального тока через ноль. Это несложный и весьма популярный способ регулирования мощности активной нагрузки.

В соответствии с внутренним устройством тиристора, в запертом состоянии его можно представить цепочкой из трех диодов, соединенных последовательно, как показано на рисунке. Видно, что в запертом состоянии данная схема не пропустит ток ни в одном, ни в другом направлении. Теперь представим тиристор схемой замещения на транзисторах.

Видно, что достаточный базовый ток нижнего n-p-n-транзистора приведет к возрастанию его коллекторного тока, который тут же явится базовым током верхнего p-n-p-транзистора.

Верхний p-n-p-транзистор теперь отпирается, и его коллекторный ток складывается с базовым током нижнего транзистора, и тот поддерживается в открытом состоянии благодаря наличию в данной схеме положительной обратной связи. И если сейчас перестать подавать напряжение на управляющий электрод, открытое состояние все равно останется таковым.

Чтобы запереть эту цепочку, придется как-то прервать общий коллекторный ток данных транзисторов. Разные способы отключения (механические и электронные) показаны на рисунке.

Симистор, в отличие от тиристора, имеет шесть слоев кремния, и в проводящем состоянии он проводит ток не в одном, а в обоих направлениях, словно замкнутый выключатель. По схеме замещения его можно представить как два тиристора, включенных встречно-параллельно, только управляющий электрод остается один общий на двоих. А после открытия симистора, чтобы ему закрыться, полярность напряжения на рабочих выводах должна измениться на противоположную или рабочий ток должен стать меньше чем ток удержания симистора.

Если симистор установлен для управления питанием нагрузки в цепи переменного или постоянного тока, то в зависимости от текущей полярности и направления тока управляющего электрода, более предпочтительными окажутся определенные способы управления для каждой ситуации. Все возможные сочетания полярностей (на управляющем электроде и в рабочей цепи) можно представить в виде четырех квадрантов.

Стоит отметить, что квадранты 1 и 3 соответствуют обычным схемам управления мощностью активной нагрузки в цепях переменного тока, когда полярности на управляющем электроде и на электроде А2 в каждом полупериоде совпадают, в таких ситуациях управляющий электрод симистора достаточно чувствителен.

Читайте также:
ТОП-5 лучших акриловых грунтовок глубокого проникновения для бетона

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Характеристика саморегулирующегося греющего кабеля

Если у Вас есть дача или Вы живете в частном доме, то наверняка Вы сталкивались с проблемой замерзания различных провод и труб. Благо, что для устранения этой проблемы есть так называемых – греющий кабель. Его преимущество перед другими методами решения подобном проблемы в том, что его установка достаточно дешевая и очень понятна даже для тех, кто никогда не сталкивался и не решал подобного типа проблемы.

Технические особенности

Мощность саморегулирующегося греющего кабеля не только позволяет спасать от морозов трубы, провода, канализационные системы, но и избавляет от замерзания крыши, водостоки, придомовую территорию. Окна, стекла в машинах и домах тоже нередко оснащаются подогревом с целью недопущения запотевания и образования конденсата.

Многие мастера используют системы «теплый пол», которые обеспечивают подогрев пола под керамической плиткой, ламинатом, ковролином, благодаря саморегулирующемуся греющему кабелю. Характеристики такого устройства достаточно широки и зависят от материала основы и покрытия.

Основной критерий выбора «теплого» провода — мощность. Варьируется она от 5 до 150 Ватт на метр. Необходимую мощность выбирают в зависимости от того, где будет использоваться схема:

  • 5 Ватт — применяется для подземных коммуникаций в том случае, если провод проложен внутри трубы;
  • 10-20 Ватт — также для подземных труб, но если кабель расположен снаружи;
  • 20-50 Ватт — используется, если трубопровод проходит по воздуху;
  • 50-150 Ватт — применяется как основной источник обогрева в системе «теплого» пола.

В данном видео рассмотрим саморегулирующийся греющий кабель:

Принцип действия

Внешний слой саморегулирующегося провода выполняется из современных пластических масс. Устойчивый к нагреву и коррозии полимерный материал надежно защищает устройство от воды, а экологически чистые полимеры позволяют использовать его внутри труб с питьевой водой.

Внутри кабеля — две шины, выполненные из меди, которая является отличным проводником и ценится за пластичность и прочность. В каждой шине — 16 скрученных жил, ее сечение — 1,25 мм². Шины вплавлены в матрицу, которая проводит ток и выделяет тепло.

Провод имеет защитную медную оплетку. Такое армирование делает его устойчивым к механическим повреждениям и воздействиям внешней среды.

Электрические контуры, с помощью которых выделяется тепло, наиболее эффективно работают с понижением температуры: чем ниже температура, тем больше КПД устройства.

Тепло в кабеле производится благодаря полупроводниковой матрице, которая содержит в себе мелкодисперсный графит. Напряжение питания подается на параллельные медные проводники, между которыми и расположена матрица. За счет повышения температуры она расширяется и расстояние между графитовыми зернами увеличивается. Растет сопротивление кабеля и падает его мощность. Так происходит саморегулирование. Если температура понижается, все происходит с точностью до наоборот.

Матрица саморегулирующегося кабеля сама находит холодные, непрогретые участки. Она реагирует на любые изменения, подстраивается под температуру водопровода и уменьшает свою мощность, если труба горячая. Таким образом, можно покупать мощный кабель, не опасаясь перерасхода энергии. Вероятность перегрева такого устройства практически отсутствует.

Для технических характеристик греющего кабеля применяется следующая маркировка:

  1. D — низкотемпературный провод.
  2. Z — среднетемпературные свойства.
  3. Q — высокотемпературный (иногда обозначается красным цветом).
  4. F — кабель с антикоррозийной обработкой.

Если труба находится в разных температурных условиях (к примеру, под землей и на воздухе), следует выбирать кабель, соответствующий мощности для поверхностных работ.

По температуре обогрева различают три вида провода:

  1. Низкотемпературные от 5 до 65-70 градусов — обогревают водопроводы небольшого диаметра.
  2. Среднетемпературные 105-120 градусов — подогревают жидкость в трубах среднего диаметра, используются против обледенения кровли и крыльца.
  3. Высокотемпературные 135-240 градусов — для промышленных трубопроводов большого диаметра.
Читайте также:
Финские входные двери для загородного дома: железные и деревянные

Сфера применения

Различают технический и пищевой виды использования греющего кабеля. В первом случае он может быть любым, а во втором внутрь трубы с питьевой водой укладывается только специальный, защищенный от окисления и ржавчины провод.

Изоляционный материал, которым покрыт кабель, бывает нескольких видов:

  • полиолефин обычный;
  • полиолефин, устойчивый к ультрафиолетовому излучению;
  • тефлон;
  • фторопласт;
  • фторэтилен.

Чем больше мощность кабеля, тем больше будет его диаметр сечения.

Питание на кабель подается с помощью электрического тока с напряжением сети 220 Вольт. Во всех случаях при укладке «теплого» кабеля требуется заземление его экрана. Можно использовать сразу несколько греющих кабелей для одной трубы, подключив их через тройник. Для экономии энергии рекомендуется подключать терморегулятор.

Укладка греющего кабеля

«Теплый» провод внутри трубы проталкивают благодаря специальной термоусадочной муфте. Однако при наличии вентилей или другого запорного оборудования нагревательный элемент прокладывать внутри трубы нельзя, иначе это непременно приведет к его поломке. Такую работу следует доверять лишь профессиональным электрикам.

Снаружи все проще — нужно всего лишь обмотать трубу. Есть два основных способа — линейный и круговой. Линейный способ предполагает прокладку провода параллельно трубе и максимально плотно к ней. Круговой метод крепления подразумевает обмотку равномерными витками с определенным шагом (5-6 см). Иногда обмотку производят спиральным способом (например, на крыше).

Для открытых труб, которые подвергаются постоянному солнечному воздействию, рекомендуется использовать специальные черные провода, устойчивые к ультрафиолету.

Кабель надежно закрепляют алюминиевым скотчем, монтажной лентой или стяжками. Если нужно, дополнительно прокладывают теплоизоляцию. Укладка проводится без сильного натяжения. Пластиковый скотч строго запрещен при подобных работах, поскольку неустойчив к высоким температурам.

Для водостоков и крыш устройство нагревательной системы монтируют вдоль периметра кровли, в желобах и трубах водостока, закрепляют с помощью зажимов, подвешивают на тросы. Если крыша имеет сложное устройство с большим количеством желобов, выбирается древовидная схема прокладки. Разветвленные отрезки могут соединяться в 3-4 узла.

Все работы должны проводиться в благоприятных условиях, когда сухо и тепло. Если монтаж осуществляется зимой или в ненастье, лучше делать все в закрытом помещении, где температура воздуха будет не ниже -5 градусов. При более низких температурах есть риск повреждения устройства. Также запрещается подключать к сети неразмотанный провод.

По завершении всех монтажных работ в помещении устанавливают шкаф управления, к которому подключают электрическую систему. Если все сделано правильно, она будет работать.

Одной из гарантий работы системы является приобретение качественного материала. Поэтому перед покупкой не следует забывать об изучении технических характеристик саморегулирующего греющего кабеля, а также о проверке наличия необходимых сертификатов.

Саморегулирующийся греющий кабель – всё что нужно знать!

Бытовые трубы:
монтаж на трубу
Бытовые трубы:
монтаж в трубу
Кровля, водостоки Резервуары Промышленные трубопроводы до 300 м
Без оплетки Низкотемпературный Полеолефин 16-30 Вт/м
C оплеткой Низкотемпературный Полеолефин 16-90 Вт/м
Фторполимер 16-30 Вт/м
UV-защита 24-40 Вт/м
Среднетемпературный 24-60 Вт/м
Высокотемпературный
Взрывозащищенный

Нагревательным элементом саморегулирующегося кабеля является матрица из полупроводникового материала, сопротивление которого зависит от температуры окружающей среды и температуры объекта, на котором кабель установлен.

Появление греющего кабеля способного к саморегуляции линейной мощности и температуры нагрева без дополнительно контрольного оборудования позволило значительно расширить сферу применения кабельного обогрева в промышленной и бытовой сферах.

Производим греющий кабель

  • Линейная мощность: 16 Вт/м.п.
  • Назначение: трубопровод
  • Страна производства: Южная Корея
  • Экран: без экрана
  • Тип: саморегулирующийся
  • Вид: низкотемпературный

  • Линейная мощность: 16 Вт/м.п.
  • Назначение: трубопровод / резервуар
  • Страна производства: Южная Корея
  • Экран: оплетка из луженой медной проволоки
  • Тип: саморегулирующийся
  • Вид: низкотемпературный
Читайте также:
Что такое герконовый датчик и где он применяется?

  • Линейная мощность: 16 Вт/м.п.
  • Назначение: трубопровод
  • Страна производства: Южная Корея
  • Тип: саморегулирующийся
  • Вид: низкотемпературный
  • Применение: без взрывозащиты

  • Линейная мощность: 16 Вт/м.п.
  • Назначение: трубопровод / резервуар
  • Страна производства: Южная Корея
  • Тип: саморегулирующийся
  • Вид: низкотемпературный
  • Применение: без взрывозащиты

  • Линейная мощность: 17 Вт/м.п.
  • Назначение: трубопровод / резервуар
  • Тип: саморегулирующийся
  • Вид: низкотемпературный
  • Применение: со взрывозащитой
  • Maкс. температура (рабочая): 65 °C

  • Линейная мощность: 17 Вт/м.п.
  • Назначение: внутрь трубы / резервуар / трубопровод
  • Тип: саморегулирующийся
  • Вид: низкотемпературный
  • Применение: со взрывозащитой
  • Maкс. температура (рабочая): 65 °C

Основные преимущества самрега

  • Не боится перегрева на любом отдельном участке, запирания, даже при пересечении кабеля;
  • эффект саморегуляции обеспечивает безопасный температурный режим объекта, что делает систему более надежной и долговечной;
  • экономия электроэнергии за счет изменения линейной мощности на каждом отдельном участке обогрева;
  • удобство монтажа, кабель можно нарезать на секции любой длины прямо на месте установки;
  • возможность эксплуатации без терморегуляторов и систем автоматики.

Строение греющего кабеля

Вид готовой секции

Применение самрега

  • Защиты от замерзания бытовых и промышленных трубопроводов, стартового разогрева и поддержания технологической температуры производственных процессов, в том числе водо-, нефте- и газо-проводов, канализационных, технологических и иных наземных и подземных труб;
  • обогрева резервуаров, емкостей различного назначения, сепараторов, ресиверов, бункеров и технологических линий;
  • защиты от замерзания системы внешних и внутренних водостоков кровли, а также в системах снеготаяния кровли малоэтажных и многоэтажных зданий, объектов коммерческой недвижимости, производственных и складских помещений.

В зависимости от максимальной рабочей температуры, самрег может быть

  • Низкотемпературный (температурный класс Т6) – максимальная температура воздействия 85°С, рабочая температура 65°С;
  • Среднетемпературный (температурный класс Т5) – максимальная температура воздействия 135°С, рабочая температура 110°С;
  • Среднетемпературный (температурный класс Т4) – максимальная температура воздействия 190-200°С, рабочая температура 120°С;
  • Высокотемпературный (температурный класс Т3) – максимальная температура воздействия 232-250°С, рабочая температура 190°С;

В бытовых системах кабельного обогрева, а также в системах обогрева кровли используется низкотемпературный греющий кабель . Среднетемпературный греющий кабель применяется в обогреве трубопроводов и резервуаров для поддержания технологических процессов. Высокотемпературный греющий кабель применяется в нефте-газовой промышленности, обычно для трубопроводов и резервуаров подверженных пропарке высокой температурой.

По степени взрывозащиты самрег делится

  • Взрывозащищенный саморегулирующийся кабель имеет сертификат взрывозащиты международного таможенного союза и знак знак Ex (Explosion-proof) , который содержит информацию о степени и виде взрывозащиты кабеля. Взрывозащищенный кабель применяется на объектах с повышенной пожаро- и взрывоопасностью. Подробнее
  • Без взрывозащиты , применяется в системах обогрева промышленного и бытового обогрева, не требующих повышенных мер взрывозащиты или пожаробезопасности.

По конструктивному исполнению кабель может быть

  • Экранированный – под внешней оболочкой кабеля расположена оплетка из луженых медных проволок, выполняющая функцию защиты от механических повреждений, а также функцию заземления кабеля. Кабель данного типа используется для систем обогрева, размещенных на открытом воздухе (кровле, водостоках), либо на объектах требующих дополнительной безопасности к эксплуатации электрооборудования (например, резервуаров, трубопроводов, производственных линий).
  • Неэкранированный – без защитной оплетки. Данный типа кабеля используется для бытового обогрева трубопровода и монтируется только под теплоизоляционный материал.

Тип внешней оболочки греющего кабеля зависит от сферы его применения

  • Полеолефиновая оболочка применяется в саморегулирующемся греющем кабеле бытового назначения для укладки под теплоизоляцию.
  • Фторполимерная оболочка применяется в кабеле, допустимом к использованию в химически агрессивных средах, а также внутри трубопроводов и резервуаров с питьевой водой.
  • Оболочка с защитой от UV-излучения содержит в составе UV-абсорберы, обычно это частицы мелкодисперсной сажи (не менее 2%), предохраняющие полеолефин от разложения под действием солнечной радиации. Подробнее

Кабель с полеолефиновой оболочкой

Кабель с фторполимерной оболочкой

Кабель с UV-защитой

Мощность греющего кабеля может быть различной, в зависимости от сферы применения и конструкции

  • Саморегулирующийся греющий кабель для кровли применяют обычно от 24-40 Вт/м.
  • Для обогрева бытового трубопровода – 16-40 Вт/м.
  • Обогрев промышленного трубопровода и резервуаров – 15-90 Вт/м.
Читайте также:
Что лучше камин или печь.

Форма поставки саморегулирующегося кабеля

Греющий кабель в бухтах 180-300 м

На отрез – кабель поставляется отрезками необходимой длины, либо в бухтах 180-300м.

Готовые комплекты – уже смуфтированные секции греющего кабеля, имеющие концевую заделку и силовой провод для подключения к системе питания. Смуфтированные секции готовы к работе, требуется только установить их согласно инструкции.

Срок службы греющего кабеля

Срок службы греющего кабеля зависит от качества материала полупроводниковой матрицы, скорости её деградации, так называемого «старения матрицы». Фактически кабель работает 10-15 лет, но постепенно мощность кабеля снижается в результате потери матрицей своих проводящих свойств.

Чтобы компенсировать этот процесс, при производстве кабеля закладывается 30-40% запаса мощности. Скорость износа матрицы зависит от нескольких факторов, определяющим является количество включений системы, «холодных пусков». Идеальный режим работы системы обогрева – поддержание температуры, а именно – включение в начале сезона и постоянная работа в штатном режиме автономного управления. Подробнее

Управление системой на основе саморегулирующегося кабеля

В системах бытового электрообогрева обогрева трубопровода (водопровода, канализации) дополнительные приборы контроля не требуются, в случае подключение одной линии обогрева длиной до 20м. Системы, состоящие из нескольких линий требуют дополнительных мер безопасности в виде автоматов дифференциальной защиты. Для управления обогревом промышленных трубопроводов и резервуаров применяются шкафы управления. Подробнее

В системах обогрева кровли применяют шкафы управления различных типов от простых бытовых, объединяющих в себе контроллеры и терморегулятор, до сложных систем с многоуровневой защитой, устройствами плавного пуска и так далее. Подробнее

Особенности монтажа греющего кабеля

Монтаж саморегулирующегося греющего кабеля в системах бытового трубопровода можно осуществлять самостоятельно, используя инструкцию по установке нагревательных секций.

В случае работы с греющим кабелем на отрез, секции изготавливаются посредством муфтирования (заделки концевой и соединительной части). Для подключения отрезка кабеля к сети используют силовой провод необходимой длины.

Готовые комплекты кабеля снабжены концевой и соединительной муфтой, имеют питающий провод (2-2,5м) и евровилку для включения в сеть.

Монтаж греющего кабеля на кровле и водостоков требует специальных знаний и опыта работы с электротехнической продукцией. Особенности устройства обогрева кровли, а также правила подбора комплектующих и монтажа мы приводим в отдельном разделе. Подробнее

Расчет длины кабеля для системы обогрева

Способы расчета количества самрега для различных систем обогрева определяется типом объекта (кровля, трубопровод, водосток, резервуар), требований к системе, исходных данных (минимальной температуры), и так далее.

Количество кабеля для обогрева края кровли рассчитывается исходя из требования 250-300 Вт/м2, в зависимости от сложности участка и материала из которого изготовлена кровля. При этом линейная мощность кабеля может варьироваться от 24 до 40 Вт/м. Общая мощность регулируется шагом укладки кабеля.

Водосточные трубы, лотки и ливневки обогреваются кабелем 30Вт/м (для пластиковых труб), в 40 Вт/м для металлических. В 1 нитку обогреваются водостоки менее 150мм, более 150мм – в 2 нитки. Ливневки и водосборные лотки менее 150мм – в 2 нитки, более широкие – в 3 нитки. Подробнее о расчете системы обогрева кровли

Мощность кабеля для системы обогрева труб рассчитывается исходя из диаметра трубы, толщины теплоизоляционного материала, и минимальной температуры окружающей среды. Существует таблица для расчета мощности кабеля для обогрева трубопровода, приведенная в соответствующем разделе.

Длина греющего кабеля для бытовых труб зависит от мощности выбранного кабеля, чтобы обеспечить соответствующую параметрам мощность системы. Если, например по таблице рассчитаная мощность кабеля 36 Вт/м, то в системе можно применить 2 нитки греющего кабеля линейной мощностью 16 Вт/м. На отдельных участка трубопровода, нуждающихся в дополнительном обогреве (чаще всего это запорная арматура), кабель укладывается по правилам, указанным в соответствующем разделе. Подробнее

Читайте также:
Установка конвекторов отопления - расчет потребляемой мощности, схема подключения, детали на фото и видео

Для резервуаров применяется экранированный кабель 15-90 Вт/м, укладывается змейкой на поверхность резервуара, образуя витки. Обогревается часть поверхности резервуара в зависимости от теплопотерь. Подробнее

Саморегулирующийся греющий кабель – принцип работы, применение и монтаж

Популярность нагревательных кабелей саморегулирующего типа возрастает как в промышленности, так и в домохозяйствах. Особенно они незаменимы при борьбе с обледенением. Когда наступают холода, есть риск промерзания и разрыва водяных, или канализационных трубопроводов, появления ледяной корки на ступенях или дорожках.

В статье мы расскажем о характеристиках и видах саморегулируемого греющего кабеля, об областях его применения, как производится установка на трубы и на крышу.

Что собой представляет саморегулирующийся греющий кабель

Саморегулируемый кабель — это тот же электрический проводник, но усовершенствованная его модель. По устройству он более сложный, чем обычный провод.

Греющий регулирующий кабель — полимерная матрица, с помощью неё, под влиянием внешних температур, происходит смена сопротивления, соответственно количества тепла, которое он выделяет.

Нагревательный элемент — две луженые медные жилы, которые покрыты графитовым пластичным составом, с добавлением полупроводникового полимера. Так образуется саморегулирующаяся матрица, которая замыкает медные жилы.

Нагревательный элемент изолируется фторполимерным термопластом, который так же защищает его от влаги. Далее идёт медная экранированная оплётка, она оберегает от механического воздействия, выступает в качестве заземления.

Наружная оболочка изготавливается из различного материала. Каждый вид предназначен для конкретных эксплуатационных условий. При стандартных условия — полиолефиновый пластик, если среда агрессивная — фторполимер.

Обрабатывается матрица и оболочка провода путём радиационной сшивки.

Принцип работы

Принцип работы саморегулирующегося проводника заключается в движении электроэнергии по нагревательным жилам. В результате чего, происходит увеличение температуры, а следовательно и сопротивления.

Чем выше сопротивление, тем меньше показатель силы тока и мощности. И наоборот, чем меньше температура, тем больше выделяется тепла.

Рассмотрим принцип работы кабеля:

  1. Саморегулирующая матрица — большое количество сопротивлений, которые включены параллельно между греющими жилами, при подаче напряжения нагреваются. Это приводит к расширению материала, что нарушает контакты между токопроводящими частицами, тем самым уменьшается объём поступаемого тока и теплоотдача.
  2. При смене температурного уровня обогреваемого участка, меняется сопротивление матрицы, и количество тепла, которое отдаёт нагреватель.

Виды – устройство, технические характеристики

Греющие кабели делятся на следующие разновидности: резистивные, саморегулирующие, индуктивные.

Они различаются по принципу работы, техническим характеристикам и конструкции.

Резистивный

Кабель резистивного типа бывает — линейным и зональным. Для его эффективной работы требуется специальная аппаратура, которая будет управлять проводником, ориентируясь на температуру окружающего воздуха.

Преимущество вида — невысокая стоимость, надёжность, лёгкость монтажа.

Следует сказать, что такой проводник выделяет всегда одинаковое количество тепла, вне зависимости от температуры воздушных масс, поэтому потребление электрической энергии низменно — что является экономически не выгодно.

Резистивный делится на:

  1. Линейный — провод, концы его подключаются к электрическому питанию. По числу токоведущих жил — одножильный и двужильный.

Одножильный — состоит из одной нагревательной, чаще стальной жилы, она покрыта изоляционным слоем, из термоустойчивого материала, который не деформируется при нагреве. Провод бывает с экраном для удаления помех, которые создаются самим кабелем и всевозможными защитными устройствами.

Плюс одножильной модели — простота в использовании. Недостаток — не возможность отрезать нужный размер, потребность подключения обоих концов в одном месте.

Двужильный — состоит из двух параллельно расположенных жил, которые передают электрический ток. Их отличие и преимущество от одножильного типа — второй конец не нужно возвращать к месту подключения, это особенно удобно при обогревании протяжённых трубопроводных магистралей.

  1. Зональный — его конструкция более сложная, по сравнению с линейным. Состоит их двух токоведущих медных жил, каждая из которых имеет отдельную изоляцию. Кроме того, он толще, чем линейный.
Читайте также:
Холодная штамповка в процессе производства крепежа

Отличие этого вида в том, что внутренняя изоляция оснащена окошками, через каждые 1 — 2 метра. Через них проводник подсоединяется к нагревательной проволоке, беря на себя напряжение сети.

Благодаря такой конструктивной особенности, постоянное сопротивление присутствует не во всём проводнике, а только в той или иной секции-зоне. Плюс — в возможности подбирать длину секции по своим потребностям. Минус — высокая цена.

Резистивный греющий проводник имеет гарантийный срок до 15 лет, при заливке в бетонную стяжку до 50 лет.

Саморегулирующийся

Саморегулирующийся греющий кабель — современная модель, отличается от резистивного не только конструктивными особенностями, но и принципом работы.

Провод с саморегуляцией — это проводники, заключённые в полимерную матрицу. Для работы не требуется регулятор, он сам будет поддерживать ту температуру, на которую его настроить, поэтому он не перегревается. Стоит такой вид дороже, но несмотря на это, повышенное КПД делает его экономичней.

Кроме этого, его можно резать на куски любого размера. Гарантийный срок службы такого вида — 10 – 15 лет, но производители закладывают запас до 40%, что существенно продлят время его работы.

Саморегулирующий проводник бывает экранированный и неэкранированный:

  1. Экранированный — внешняя оболочка покрывает оплётку из лужёной медной проволоки, которая защищает от механических повреждений, служит заземлением. Такой кабель предназначен не только для обогрева водопровода, но и для установки на открытом воздухе — кровля, водосток.

Оболочка бывает пищевая — применяется при нагреве водопроводных и канализационных систем внутри, и с УФ- защитой — монтируются на крыше, где много солнечных лучей.

  1. Неэкранированный — изделие не имеет защитную оболочку. Используется для обогрева бытовых трубопроводов, не укладывается на открытом воздухе, где возможно воздействие агрессивных сред.

  1. Наружная полиолефиновая оболочка.
  2. Оплетка из луженной медной проволоки.
  3. Изоляция из эластомерного термопластика.
  4. Полиэфирная оболочка.
  5. Полупроводящая саморегулирующая матрица.
  6. Медные жилы.
  1. Наружная полиолефиновая оболочка.
  2. Внутренняя полиэфирная оболочка.
  3. Полупроводящая саморегулирующая матрица.
  4. Медные жилы

Экранированные модели дороже тех, которые не имеют оболочки.

Основные области применения саморегулирующегося нагревательного кабеля:

  • бытовые трубы;
  • системы обледенения (крыши, дорожки);
  • промышленность.

Для обогрева разных коммуникаций, требуется нагревательный элемент следующей мощности. Для:

  • труб внутри — 10 Вт/м погонный;
  • трубопровода снаружи — 15 Вт/м. п.;
  • крыш и дорожек — 24-30 Вт/ м. п.;
  • систем антиобледенения — до 40.

Какой вид выбрать

Выбирая саморегулируемый кабель, надо учитывать характеристики и параметры изделия, принцип работы, условия его эксплуатации — длину участка требуемого для обогрева, максимум низких температур.

Моменты, на которые нужно обращать внимание при покупке греющего провода:

  • наличие защитной оплётки — она придаёт надёжность, обеспечивает заземление;
  • тип наружной изоляции;
  • мощность изделия.

От области применения греющего проводника так же зависит его выбор. Если провод нужен для обогрева канализации — то подойдёт изделие из полиолефина, для водопроводных систем рекомендована защита фторпластовая.

Для наружного монтажа лучше взять модель с изоляцией из фторполимера, она защищает от влаги и ультрафиолета.

При необходимости обогреть трубы с маленьким диаметром, подойдёт низкотемпературный проводник с напряжением 15 Вт/м. Предназначение среднетемпературных (до 30 Вт) — трубопровод большого диаметра. Виды с высоким напряжением в быту практически не применяются.

Кабель без экрана рекомендовано устанавливать в трубы, которые укладываются в землю, так как он не оснащён заземляющей оплёткой. Экранированный безопасней, но стоит больше, а нагревательная матрица у них одинакова, поэтому нет смысла в землю закапывать более дорогую модель.

Покупая саморегулирующий греющий нагреватель надо его сжать пальцами, затем провести так по всей длине. В некачественном изделии внутри будут нащупываться воздушные полости.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: